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Abstract—Evaporation from a flat-plate surface to a laminar boundary layer flow past the plate is
theoretically analyzed, taking into account the two-dimensional thermal conduction in the plate, with the
convective thermal-boundary condition on the other plate surface. The thermal effect of the volatile liquid
supply to the plate is neglected. Distributions of the interfacial temperature and the local Nusselt and
Sherwood numbers are calculated for a parallel flow where both Prandtl and Schmidt numbers are equal
to unity. The characteristics in heat and mass transfer are revealed to be significantly influenced by the
temperature dependency of the vapor-liquid equilibrium, the magnitude of the latent heat of phase change,
and the thermal conductance of the flat plate.

1. INTRODUCTION

IN ABLATION or perspiration cooling problems and
heterogencous chemical reaction problems, infor-
mation on the interfacial temperature and con-
centration distributions is essential because the trans-
fer characteristics are mainly determined by the
temperature and concentration differences between
the bulk flow and the interface. As a fundamental
study for those problems, analyses of the conjugate
thermal problem between convective heat transfer and
thermal conduction in the neighboring flat plate wall
are of great interest. In cases with chemical reaction,
for instance, combustion problems might be too com-
plicated to be dealt with analytically, taking account
of the thermal conduction in the wall, because not
only concentration and temperature dependence of
the reaction rate but also transfers of various kinds of
reactants and products make such problems more
difficult to analyze even though the wall conduction
is negligible [1].

For coupling of convective heat transfer in a bound-
ary layer flow over a flat plate of finite thickness with
two-dimensional thermal conduction in the plate, a
leading study was presented in 1961 by Perelman [2]
for a case with heat generation in the plate. He derived
theoretical expressions for the interfacial temperature
and the local Nusselt number. The investigation was
extended to a case with a compressible gas flow by
Luikov et al. [3]. They presented analytical solutions,

t Present address : Tonen Chemical Corp., Ukishima-cho,
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taking into account the fluid viscosity dependent on
the temperature. However, in both articles no numeri-
cal results were given. Later, a case with a flat plate
of finite length was comprehensively analyzed in detail
in ref. [4], by expanding the interfacial temperature
6(x) into a power series of ./x with unknown
coefficients to be determined. The interfacial tem-
perature and the local Nusselt number for cases with
the first- and second-kind boundary conditions on the
outer plate surface were calculated. It was found that
the interfacial temperature is influenced markedly by
the wall conduction when the plate is short and/or
thick and its thermal conductivity is high in com-
parison with that of the fluid.

On the other hand, a one-dimensional approxi-
mation of the conduction process in a flat plate has
been introduced, for example, by Luikov [5] and most
recently by Pozzi and Lupo [6] for simplicity and
practical uses or further theoretical extensions. The
validity and the applicability of the simplification
must be examined by detailed analyses including the
axial thermal conduction.

In the present study, evaporation from a surface of
a porous flat plate of finite thickness filled with a
volatile liquid to a boundary layer flow is theoretically
analyzed as an extension of the previous work [4], by
combining the mass transfer with the conjugate heat
transfer between the flow and the plate through the
vapor-liquid equilibrium relationship. In the analysis,
the two-dimensional thermal conduction in the plate
is accounted for to clarify the axial conduction effect
and the outside thermal condition is specified as the
third kind. However, influence of the liquid flow in
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saturated concentration at T, [kg m 7]

saturated concentration at T, [kg m™?]

diffusion coefficient [m? s~ ']

heat transfer coefficient between plate

and ambient fluid (Wm~2 K]

dimensionless latent heat of

vaporization,

HC—C){pe,(T, ~T)))

J (i=1)/2

k thermal conductivity [Wm~' K~ 1]

L plate length [m]

L* aspect ratio of plate, §/L

m index in equation (14), parameter
relating to plate inclination

M;(n) normalized function defined in equation
(47)

Nu, local Nusselt number, equation (61)

Pr Prandtl number, v/«

R, ratio of thermal conductances of plate
and stream, k., L/(k:0)

Sc Schmidt number, v/D

Re, local Reynolds number, u,x/v

Re;  local Reynolds number at x = L, u,, L/v

. local Sherwood number, equation (62)

T temperature [K]

=

o an

I

NOMENCLATURE
a coefficient in equation (12) [kg m~* K] U coeflicient in equation (14) [m'~ " s ']
A dimensionless coefficient, u velocity component [ms ']
a(T,, —TH(C,—C,) X coordinate along flat plate [m]}
b constant in equation (12) [kg m ] x* dimensionless coordinate, x/L
B dimensionless constant, v coordinate perpendicular to plate [m]
C,—CH/I(C.~C) y* dimensionless coordinate, y/L
Bi Biot number, hd/k,, 7 dimensionless coordinate, y/d
C concentration [kg m™?) Y,(n) normalized function defined in equation
C*  dimensionless concentration, (42)
(C=CH(C—C) Z 14+ C*,

Greek symbols
o thermal diffusivity [m* s~ ']
i coefficient in power series
) thickness of flat plate [m]
" similarity variable, (¥/2){u./(vx)}'"*
0 dimensionless temperature,
(T-T)/(T,—T)

y) latent heat of vaporization [J kg~ ']

v kinematic viscosity [m?> s~ ']

p fluid density [kg m ™}

T coefficient in power series, to be
determined

¢ dimensionless stream function, equation
(20)

1 stream function, (u,,vx)"*¢(n).

Subscripts

f boundary layer flow

h ambient fluid

i boundary layer—plate interface

w plate

x component in the x-direction

y component in the y-direction

0 outside of boundary layer.

the porous plate due to the liquid supply on heat
transfer is neglected to simplify the problem. Dis-
tributions of interfacial temperature, the local Nusselt
and local Sherwood numbers were calculated for a
parallel-flow case where the Prandtl and the Schmidt
numbers are equal to unity. The effects of wall con-
duction and the interaction of heat and mass transfer
on them are discussed in detail and verified the validity
of the traditional analogy concept between the heat
and mass transfers.

2. THEORETICAL ANALYSIS

The problem analyzed in the present work is such
that a gas of temperature 7T, concentration C,, and
velocity u,, passes under the laminar flow condition
over a flat plate of thickness J, length L and with
an inclination angle mn/(m+1) to the flow (m =0
corresponds to a flow parallel to the plate and m = 1

to a stagnation flow). The plate is porous and com-
pletely filled with a volatile liquid, and the plate sur-
face is covered with a very thin and stagnant liquid
film. The heat and mass transfers through the front
end of the plate are assumed to be negligibly small
in comparison with that through the plate surface,
similarly in the literature [2-4]. This is consistent with
the boundary layer approximation of the Navier—
Stokes equations. The trailing edge is connected with
a semi-infinite insulated plate. The opposite surface
of the plate is exposed to an ambient fluid stream of
temperature T, lower than that of the gas stream
and the ambient convection is described by the heat
transfer coefficient A.

Under such a situation, heat is transferred from the
bulk flow to the interface through the developing
boundary layer along the plate wall and the liquid
vaporizes and diffuses from the liquid film on the plate
surface to the free stream. The rates of heat and mass
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transfers are not independent but conjugated with
each other by the characteristic equilibrium relation,
being different from that in simple heat or mass trans-
fer problems. Therefore, the characteristics of heat
transfer and mass transfer cannot be predicted easily
from the solutions of simple heat or mass transfer
problems. But it can be derived if the momentum and
energy equations of the gas flow and the conduction
equation of the plate wall are solved simultaneously
under the conjugate boundary conditions describing
the continuities of temperature and energy flux and
the vapor-liquid equilibrium at the interface.

The present analysis is suitable for the following
cases: (1) sublimation or ablation of a flat plate where
a decrease in the plate thickness is relatively small;
(2) perspiration cooling of a flat plate where liquid
vaporizes only from the plate surface; (3) chemical
reaction on the plate surface where mass transfer
in the boundary layer flow is rate-controlling; (4)
vaporization from a stagnant liquid film on a plate
where a decrease in the film thickness and the thermal
resistance of the film are comparatively small and
negligible.

This model includes a special case with a constant
temperature on the opposite wall surface, which is
obtained as a limit case when h approaches infinity.
The analyzed states of the bulk stream, the interface
and the ambient temperature are shown in a tem-
perature—concentration plane of Fig. 1. In the figure,
C, and C,, refer to the concentrations saturated at the
bulk-stream temperature T, and the ambient fluid
temperature 7}, respectively.

The coordinate system used in the present analysis
is such that the origin is at the leading edge, the
abscissa x along the plate and the ordinate y normal
to the plate surface.

To simplify the theoretical analysis, the following
assumptions are introduced :

(1) gas is incompressible Newtonian fluid ;

(2) all physical properties are constant, being inde-
pendent of either temperature or concentration;

(3) bulk-stream velocity is described by equation
(14) of the Falkner—Skan flow;
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Fi16. 1. Relation between equilibrium curve and driving
forces.
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(4) energy dissipation due to fluid viscosity is neg-
ligible ;

(5) thermal conduction and mass diffusion in the x-
direction in the fluid can be neglected in comparison
with those in the y-direction;

(6) injection accompanied by vaporization has no
influence on flow condition ;

(7) gas at the interface is saturated at the interfacial
temperature and its equilibrium relation can be ex-
pressed by a linear function of temperature.

2.1. Governing equations

The governing equations in momentum, heat and
mass boundary layers can be formulated as follows
for the two-dimensional steady-state problem.

2.1.1. Fundamental equations for fluid flow.

Equation of continuity

% % =0 4))
and equation of momentum transfer in the x-direction
2
ux%+uy%=v%i—x uoo%lf)—:3 2)
with boundary conditions
atx =0, u =u, (3
aty=0, wu,=u,=0 “)
aty = 00, U, = U,. %)
Equation of energy transfer
2
ux% +uy%§f =a aayT; (6)
with boundary conditions
atx=0, T;=T, @)
aty =0, T;=T(x) ®
aty=o00, T;=T,. &)
Equation of mass transfer
uxgé+uy%§=D%;—§ (10)
with boundary conditions
atx=0, C=0C, (11
aty=0, C=C(x)=ali(x)+b (12)
aty=ow, C=C,. (13)
Bulk-stream velocity of Falkner—Skan flow
U, = Ux™. (14)
2.1.2. Fundamental equations for wall.
Equation of wall heat conduction
o*T, 0°T,
a2t F (13)

with boundary conditions



2902

atx=0and L, 0T,/0x=0 (16)

at y =0, T, = T{x) a7
. T, .

aty = —4. —k = = T, ~Ty). (18)

In the above, equations (8) and (17) are the con-
jugation of the temperature continuity at the stream—
wall interface, and equation (12) is that of heat and
mass transfers through the equilibrium. The last con-
jugate relation is given as follows.

Conjugate boundary condition on energy flux

T,

Ty __oC
L N S )R
ay dy

\

aty =0, —k; (19)

2.1.3. Normalization. First, to rewrite the fun-
damental equations for the boundary layer flow, we
introduce the following similarity variable and stream

function :

NI2
R . — ) 142
n—2<w) LU= ) o). (20)

Second, to normalize the entire problem, dimen-
sionless variables and parameters are defined as
follows :

x*=x/L: y*=yp/L; ¥=y/);
g T=Ty ., _(C=C,)
(T, ~T)" (€ —C,)
Bi = héjk, . R, =k, L)/(kid). L*=0/L;
Pr=via; Sc=v/D;
A(C ) u, L
F e 2, =
T pe (T, —Ty) Rep ==,
AT =T G- ch _G-C,
T ¢-C, C-C, T C-C,

On the basis of the previous assumption (7), and
by referring to Fig. 1, it can be seen that parameter 4
is equal to the ratio of segment RS to segment RP and
B is that of SP to RP. Accordingly B is dependent of
A and can be expressed as B = 1—4

Thus all equations (1)--(19) are rewritten as follows.

Equation for stream function

d*e d*¢ m{4__ (i‘f)}:o 21

— Dp- -5 +2
O +(m+1)o dn®
with boundary conditions

atp =0, ¢=0 and d¢/dg=0 (22)
atn = cc. do/dy =2 (23)
Energy equation for fluid stream
) 00, 50,
ﬂr(ﬂ‘ +(m+1)¢ Pr\— 2wk Pret—0 (24)
on* 0x

with boundary conditions

atx* =0, 6, =1 (25)

S. Mort! et al.

aty =0, Or = B,(x*) (26)
atn = oo, Oy=1. 27)
Mass transfer equation
A1C* oc* 0C*
TT S (M1 Scor 0% See =0 (28)
on an ax*
with boundary conditions
atx*=0, C*=0 29
atn =0, C* = C*x*) = A0(x*)+ B (30)
aty = oo, C*=0. (3h)

When a new variable Z(x*, #) = 1 + C* is introduced,
the above problem is rewritten as

A oz 0Z

'(A g Se's 20 e 5 —0 (32)
with boundary conditions
atx*=0, Z=1 (33)
atn =0, Z=14+C*x*) = 40,(x*)+B+1 (34)
atn = o, 2 =1 (3%

Consequently, the mass transfer equation and the
boundary conditions are reduced to the same equa-
tions as those for the energy transfer, equations (24)--
(27). In the above and hereafter the prime denotes
differentiation with respect to #.

Energy equation for wall

s ?Xz“ + O(fg;” =0 (36)

with boundary conditions
atx* =0and I, (OW/mc =90 (37)
ati=0 e = 0;(x%) (38)
aty= —1, 60W/("7ﬁ: —Bid,. (39)

Conjugate boundary condition on energy flux at
interface

of;

V¥

H Pr (/C*
P— T Sc (y

¥ =0

{40)

2.2. Solution procedure

The momentum boundary layer problem, equa-
tions (21)-(23), is a two-point boundary value
problem. Since it is hard to solve analytically, numeri-
cal analysis is required.

The solution of the energy equation is assumed to
be in the following infinite series as in the previous
work [4]:
0r(x*,n) = 14+0,(x*, 1) +0,(x*,n)
+0f(X*’ 1’[) +

+0;(x* )+ (41)
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Furthermore, we assume the dependency on x* as
follows :

Bt = 1+ 3 1x¥Y(n)

i=1

(42)

where
j=(@G-1n/2.

Then we obtain the following ordinary differential
equation with respect to Y,(n):

2

Y, dy,
L nt 1) Progl =29 PrY, =0 @43)

dn?
with boundary conditions
atn=0, Y, =1 (44)
atp=oc0, Y;=0. (45)

Consequently the interfacial temperature is rep-
resented by

0,(x*) = O:(x*,0) = 1+ Y. 1.x¥.

i=1

(46)

On the other hand, the mass transfer problem is
treated in a similar way, that is, we assume the fol-
lowing solution:

Z(x* ) = 1+ C*x* ) = 14 Y Bx*M;(n)

7
where
j=(@-1/p2

Then the following ordinary differential equation with
respect to M,(n) is obtained :

2

J
dn

ScM,=0 (48)

with boundary conditions

atn =0, M;=1 (49)

aty =00, M;=0. (50)
Accordingly the interfacial concentration becomes
atn=0, Z(x*0)=1+C*x*) =1+ Bx*.
i=1

(D)

At the interface, the equilibrium relation should be
satisfied, thus

CH(x*) = AO;(x*)+B =B+ A4 (1+ D 'c,-x*j>.

(52)

Consequently values of g, are combined with values
of 7; as

Bi=A(l+1,)+B and B, = Az (53)
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Taking into account the linear dependency of the equi-
librium at the interface, we have

B =1+A1,. (54)

The preceding two ordinary differential equations
with respect to Y,(n) and M;(n) are of the same two-
point boundary value problem with different par-
ameter. These equations and ¢(y) can be solved
simultaneously by numerical integration.

On the contrary, the heat conduction equation for
the wall can be solved analytically by applying the
traditional technique of separation-of-variables

_14Bi(1+7)
~ 1+8Bi ( Z )

A—l

0. (x*, 5)

nnl* cosh {nnL*(1+ )}
Z + Bisinh {nnL*(1+7)}
+2 nnL* cosh (nnL¥)+ Bisinh (nnL*)

n=1

X cos (nmx*) ( j EE D12 cos (nmf) d&f) (55)

In these equations, the coefficients 7, and §; are
unknown. These coefficients can be determined in the
following way.

The conjugate boundary condition on the inter-
facial energy flux, equation (40), is modified to give
the following two equations:

' 90, fl a0,
— dx*—R, | —=
J; ay* y*= 0 ay
HPrf oC*

+
a*

cos {(N—1)mx*} dx*
0

dx*
y=0

d *=0 (56)
J' 20,

) (7y* =
' 90

‘-Rw :V

ﬁ aj |y

y=0

cos {(N—1)zux*} dx*

+HPr Loc*
Sc Jo oy*

where

cos {(N—Drx*} dx* =0 (57)

N=123,4,....

The dimensionless temperature gradient at the
interface on the fluid side is calculated from equation
(42) as

s

oy*

_ b on
yp=0 On Oy*

\/(Rel) ( Y gk Y’(O)) (58)

and that at the plate-side interface from equation (55)
as



N i nul* tanh (nnl*)+ Bi
, it L* 4 Bi tanh (nnl*)

=

ox 1
x nmL* cos (nmx*) ( Y ‘E,J E D2 cos (nmé) dé).
i=1 0

(59)
Similarly the interfacial concentration gradient is also
derived from equation (47) as follows :

oCc* éC* én
Oy* s _ o oy Ov¥|, -
_ \/(Rel‘z

5 (Z /fix*‘f—z"'ZM;(O)). (60)

After substituting equations (58)-(60) into equa-
tions (56) and (57), we obtain a set of simultaneous
arithmetic equations with respect to values of 7;. If the
set of arithmetic equations is solved to determine the
coefficients 7;, the other coefficients f8;, the interfacial
temperature gradients and the concentration gradient
at the interface can be calculated from the values of
;.
The local Nusselt number and the local Sherwood
number are defined as follows:

Nu, = ——

(61)

T B M)
= e (Rey)  (62)
2(] + A4 }: ‘L’,x*’)

i=1

where
j= (=12

According to classical investigations on heat trans-
fer with a laminar boundary layer flow over a flat
plate, the local Nusselt number is given for a constant-
wall-temperature case [7] as

Nu, = 0.332/(Re) Pr'/*

and for the case with constant interfacial heat flux [8]
as

Rex = urx:x/v’

(63)

Nu, = 0.453,/(Re ) Pr'*. (64)

S. Mori1 et al.

3. NUMERICAL RESULTS AND DISCUSSION

The present numerical calculations are those for the
case with a flow parallel to the plate where m = 0, and
Pr and Sc are both equal to unity. The dimensionless
plate thickness is fixed at L* = 0.03. The other
parameters are changed in the following ranges:
500 < Re; <50000; 1 <R, <50000; 001 < Bi <
5000;0.1 < 4<4; -50 < H<50.

As both Pr and Sc are unity in the present cal-
culations, equations (63) and (64) can be modified
respectively as follows :

for the constant-wall-temperature case

Nu/\/(Re,) = 0.332; (65)
for the case with constant interfacial heat flux
Nu,/\/(Re,) = 0.453. (66)

Analogous relations for the mass transfer are given as
follows :

for the constant-wall-concentration case

Sh,/\/(Re,) = 0.332; 67)
for the case with constant interfacial mass flux
Sh./\/(Re,) = 0.453. (68)

The above relations, equations (65) and (67), are rep-
resented by a broken line in the following graphs of
local Nusselt number and local Sherwood number.

Figure 2 shows the interfacial temperature dis-
tributions for various values of Re;. The other par-
ameters are Bi= 1000, H=10. R, =100, and
A =0.4. The value of Bi corresponds to a situation
with constant temperature on the opposite plate
surface, because the effect of the outer convection is
negligibly small.

The interfacial temperature for all values of Re, is
negative in the whole range of x*, implying that the
vaporization markedly lowers the interfacial tem-
perature. It is found that the energy for the vapor-
ization is supplied not only from the gas stream but
from the ambient fluid through the flat plate, and that
the interfacial temperature decreases with an increase
in Re,. In a simple problem with pure heat transfer,

@« i 5000
10000

R X .o
x*

FiG. 2. Interfacial temperature distributions (Bi = 1000,
H =10, R, =100, 4 =04, Pr = Sc = 1.0, L* = 0.03).
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an increase in Re; enhances the transfer rate between
the stream and the plate, as in a simple mass transfer
problem. An increase in Re, prompts both heat and
mass transfer rates, but the mass transfer from the
surface lowers the interfacial temperature. Thus an
increase in Re, leads to two opposing effects on the
temperature field, namely, a rise in the interfacial tem-
perature due to the improvement of heat transfer from
the bulk stream to the plate, and a decrease in the
interfacial temperature due to enhanced vaporization.
The change in the interfacial temperature resulting
from an increase in Re; is determined by the inter-
action of these effects through the equilibrium
relationship.

In Fig. 3, two graphs show the local Nusselt number
and Sherwood number in the form of Nux/\/ (Re,)
and th/\/ (Re,), respectively, under the same con-
ditions as in Fig. 2. In the whole x* region, the curves
of Nu,/\/(Re,) are lower than predicted by equation
(65), and the curve for Re, = 500 is the lowest and
has the most abrupt decrease in the small x* region.
Such a tendency in the curve is caused by the marked
rise in interfacial temperature along x*. Generally the
Nusselt number increases with Re, because of the
enhanced heat transfer.

The curves of Sh./,/(Re,) in Fig. 3 are about 5-
15% higher than the analogous relation of equation
(67). Those at Re, = 500 and 1000 have a maximum
near the leading edge. The curve at Re; = 50000 is
the closest to equation (67) and the change with x* is
small and monotonic.

Figures 4 and 5 show the dependencies of the inter-
facial temperature, Nu./\/(Re,) and Sh./,/(Re,) on
the opposite side convective heat transfer. In these
figures, the Biot number is varied while keeping

0.32H1

Nuyx /o/Rex

0.30 Re, = 500

0.38
Re, = 1000

0.36

Shy /o/Rey

0.34

x*

FiG. 3. Distributions of local Nusselt and local Sherwood

numbers (broken line, equation (65); Bi = 1000, H = 10,
R, =100, 4 =04, Pr=Sc = 1.0, L* = 0.03).
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-0.2

Bi 2100

FiG. 4. Interfacial temperature distributions (Re, = 1000,
H=10,R,=100,4 =04, Pr=Sc=1.0,L*=0.03).

Re; = 1000 and the other parameters are the same as
those for Figs. 2 and 3.

When Biis small, the interfacial temperature is low,
and inversely Nux/\/ (Re,) is high and close to equa-
tion (65). On the other hand, th/\/ (Re,) gets lower
with a decrease in Bi and also approaches the anal-
ogous relation, equation (67). For Bi > 100 the inter-
facial temperature loses its dependency on Bi, there-
fore it can be approximated as a case with constant
temperature on the opposite plate surface. Fur-
thermore, as Bi decreases, heat transfer resistance
in the ambient fluid becomes dominant in the heat
transfer process. Finally the outside boundary con-
dition approaches almost adiabatic as Bi becomes less
than 0.01. Under this extreme condition, heat and
mass transfers take place in such a way that they are
balanced well with each other during the development
of boundary layers along the plate. In the present case

—--Bi=0.01_______/|

Nux/\/ Re,

Sh, o/ Rex

Fic. 5. Distributions of local Nusselt and local Sherwood
numbers (broken line, equation (65) or (67); Re, = 1000,
H=10,R, =100, A = 0.4, Pr = Sc = 1.0, L* = 0.03).
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of Pr=Sc =1, where the plate is almost thermally
insulated from the ambient, each boundary layer
develops along the plate in exactly the same manner.
Consequently at Bi = 0.01 the interfacial temperature
distribution is flat and uniform in the whole range of
x*, which leads to a uniform distribution of interfacial
concentration. In this case the interfacial temperature
can be estimated by the solutions of two separate
probiems on heat and mass transfers, by balancing
the heat flux and the latent heat of vaporization cor-
responding to the mass flux at the interface.

For various values of R,, which is the measure of
the wall conductance, distributions of the interfacial
temperature, Nux/\/(ReX) and Sh./\/(Re) are shown
in Figs. 6 and 7. The other parameters are as follows :

o Ry = 50000
L 1000
-0.2} 500
-0.4r 200
Q’D" -
-0.6 100
50
~Q.8}
? 10
-1.0 o
6] 0.5 1.0
X*

Fi1G. 6. Interfacial temperature distributions (Re, = 5000,
Bi= 1000, H =10, 4 = 0.4, Pr=Sc = 1.0, L* = 0.03).

.o 50000__

Nux /A/Rex
o]

0.30

Ry =500
0.38
Rw =200 100
50
500
E " 0.36
o
~ 1000
=
oy
wn

FiG. 7. Distributions of local Nusselt and local Sherwood
numbers (broken line, equation (65) or (67); Re, = 5000,
Bi = 1000, H =10, A = 0.4, Pr = Sc = 1.0, L* = 0.03).
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Re; = 5000, Bi=1000, H=10 and 4 =0.4. The
interfacial temperature is higher at a larger R, and
the curve at R, = 50000 is practically equal to zero,
which is the outer plate surface temperature. Con-
cerning Nux/\/(Rex) and th/\/'(ReX), the following
characteristic behaviors are observed: Nux/\/(Re()
between about x* = 0.2 and 0.8 is the smallest at
about R, =500, and Sh./,/(Re,) between about
x* =0.15 and 0.75 is the largest at about R,, = 200;
and for two extremes of R, 1.0 and 50 000, the resuilts
almost agree with 0.332. The other aspect in the dis-
tribution differences from the previous figures, is that
some of the curves, for example, the th/\/(Rex) dis-
tribution at R, = 1000, show a change which is not
monotonic and has a steep rise and fall along the
x*-axis.

In Figs. 8 and 9, the distributions of the interfacial

A=4.0

o 0.5 o

X*

F1G. 8. Interfacial temperature distributions (Re; = 5000,
Bi = 1000, H = 10, R, = 100, Pr = Sc = 1.0, L* = 0.03).

0.35¢}

0.30

Nuy /o/Rey

B .

o lo folole
LSRR ]

0.25
1.0
tf A=2.0
o
4.0
\X 0.5, <o® ]
5 A=1.0
% G.5 )

F1G. 9. Distributions of local Nusselt and local Sherwood
numbers (broken line, equation (65) or (67); Re, = 5000,
Bi = 1000, H = 10, R, = 100, Pr = Sc = 1.0, L* = 0.03).
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temperature, Nu,/\/(Re,) and Sh,/\/(Re,), are shown
for various values of A which is the measure of the
temperature dependency of the equilibrium curve for
a given system. The other parameters are fixed at
Re, = 5000, Bi = 1000, H = 10 and R, = 100. The
interfacial temperature at a smaller value of 4 is lower
and changes more significantly with x*. The curve of
Nu,/ \/ (Re,) for A = 1isroughly represented by equa-
tion (65), as shown in Fig. 9. Furthermore, at A = 2.0
and 4.0, Nu,/\/ (Re,) is larger than 0.332, being differ-
ent from the distributions in Fig. 7. The curves of Sk, /
J/(Re,) behave in a manner completely different from
those of Nu/,/(Re,). Thatis, for 4 < 0.6, Sh,/\/(Re.)
does not vary so much with x*, however, th/\/ (Re,)
is the lowest at 4 = 1.0 and the highest at 4 = 2.0.

Hereafter, the influence of the parameter H, which
is the dimensionless latent heat of vaporization, on
heat and mass transfer characteristics, will be dis-
cussed.

For various positive values of H, the interfacial
temperature, Nu,/,/(Re,) and Sh./\/(Re,) are shown
in Figs. 10 and 11. The situation considered in these
figures corresponds to that shown in Fig. 1 where the
ambient temperature is lower than that of the bulk
stream. Conditions for the numerical calculations are
fixed as follows: Re, = 5000, Bi = 1000, R, = 100
and 4 = 0.4.

At H = 0.0, conjugate heat transfer takes place
although only the mass transfer is affected by the heat
transfer. In the graph, the interfacial temperature is
lower at a higher H, showing that the cooling effect
of vaporization is substantial. The mass transfer effect
is not appreciabie for H < 0.01, because the resuits
agree with each other in the range of 0.01 < H < 0.0.
On the other hand, though the interfacial temperature
is low at H = 50, its thermal driving force, the tem-
perature difference between the bulk flow and the
interface, is almost uniform in the whole range of x*.
This means that the mass transfer brings the local
Nusselt number distribution close to that for the con-
stant-wall-temperature condition, equation (65). Such
a behavior is clearly observed in Fig. 11, where Nu,/

|

H £ 0.0
N CHI
\:'5 1.0

FiG. 10. Interfacial temperature distributions (positive H ;
Re; = 5000, Bi = 1000, R, =100, 4 =0.4, Pr = Sc=1.0,
L* = 0.03).
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Fic. 11. Distributions of local Nusselt and local Sherwood

numbers (positive H; broken line, equation (65) or (67);

Re, = 5000, Bi = 1000, R, = 100, 4 = 0.4, Pr=Sc = 1.0,
L* =0.03).

\/ (Re,) shows the lowest curve at about H = 5.0 and
10, which is less than 0.332 given by Pohlhausen [7].
The curves of th/\/ (Re,) monotonously spread with
H over a range around 0.332.

Figures 12 and 13 show the results for negative
values of H. The situation considered in these figures
corresponds to the case where the ambient tem-
perature is higher than that of the bulk stream. The
conditions for numerical calculations are specified as
Re, = 5000, Bi = 1000, R, = 100and 4 = —0.4. The
curve of Nu,/\/(Re,) at H = —50, not shown in the
upper graph of Fig. 13, almost agrees with that of
H = —20. The interfacial temperature at H = — 50 is
the highest, however, the driving force for heat trans-

FiG. 12. Interfacial temperature distributions (negative H ;
Re; = 5000, Bi= 1000, R, =100, 4 = —04, Pr=Sc=
1.0, L* = 0.03).
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F16. 13. Distributions of local Nusselt and local Sherwood

numbers (negative H; broken line, equation (65) or (67);

Re, = 5000, Bi= 1000, R, =100, 4 = —04, Pr= Sc=
1.0, L* = 0.03).

fer is less dependent on x* in comparison with those
for the other values of H. This small change in the
temperature difference along the x*-axis gives the
local Nusselt number distribution close to equation
(65), as shown in the upper graph of Fig. 13. Appear-
ance of a discontinuous point is notable in the Nu,/
J(Re,) distribution for —0.5> H > —2.0. On the
other hand, Sk, /\/(Re,) is higher at a lower H, with-
out any higher or lower limit of influence.

Further discussion will be made below, based on all
of the above numerical results.

According to the previous study on pure heat trans-
fer with boundary layer flow with thermal conjugation
between the flow and the plate wall [4], the interfacial
temperature settles down between ¢ = 0 and 1 (the
temperatures of the ambient and bulk stream., respec-
tively) due to the thermal interaction. The resulting
distribution of the local Nusselt number has an inter-
mediate curve between equation (66) as the upper
limit for the constant-wali-heat-flux case and equation
(65) as the lower limit for the constant-wall-tem-
perature case. Generally the local Nusselt number
rises with an increase in the thermal driving force
with x*, i.e. an increase in the temperature difference
between the interface and the bulk stream.

In the present problem, the interfacial temperature
varies in a range much wider than 0 < 0 < 1, and the
local Nusselt number and local Sherwood number
also change beyond the two limiting values for the
constant-wall-heat-flux and constant-wall-tempera-
ture cases, as mentioned above. Furthermore, the
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distribution of the Nusselt number has a dis-
continuous point occasionally as in the upper graph
of Fig. 13, and probably the distribution of the Sher-
wood number as well, as suggested in the lower graph
of Fig. 9. Thus the interaction between mass transfer
to the boundary layer flow and conjugate heat transfer
with the flow and the plate wall, is not straight-
forward, and this effect is hard to estimate properly
from the solutions of the simplest heat transfer prob-
lems treated by Pohlhausen and Kays and those for
mass transfer derived analogously from the heat trans-
fer. The present comprehensive analysis becomes sig-
nificant and effective in order to obtain theoretical
prediction, especially for cases where the vapor-liquid
equilibrium is highly temperature dependent and/or
latent heat of vaporization is large.

Appearance of a discontinuity in the distribution
of the local Nusselt number can be explained as
follows. As an example of such a case, the results at
H = —2.0shown in Figs. 12 and 13 will be considered.
The interfacial temperature gradually decreases along
the x*-axis and cuts across the line of 6, = 1.0 at
x* = 0.37. This means that the superficial driving
force of the heat transfer changes from negative to
positive at the intersection. On the other hand, in the
vicinity of the leading edge, the local heat flux is in the
direction from the interface to the bulk stream and
changes its direction downstream. But the change
in the heat-flux direction does not synchronize with
a decrease in the apparent driving force. This mis-
match causes a discontinuity in the local Nusselt
number distribution. In the case of mass transfer
also, the appearance of a discontinuity in the local
Sherwood number could be explained in a similar
manner.

4. CONCLUSION

Theoretical analysis has been conducted for evap-
oration to a laminar boundary layer flow from a flat
plate surface, where the convective heat and mass
transfers and the two-dimensional thermal con-
duction in the plate are combined simultaneously. The
conjugation is achieved by taking into account the
vapor--liquid equilibrium of linear temperature depen-
dence at the interface, the latent heat of vaporization
and the continuities of temperature and heat flux at
the interface. Convective heat transfer described by a
constant heat transfer coefficient is assumed in the
ambient fluid.

Numerical calculations have been made for the par-
allel flow case where both values of the Prandtl and
Schmidt numbers are unity. Based on distributions
of the interfacial temperature, Nu.//(Re,) and Sh./
J(Re,) obtained, the interaction of heat and mass
transfers and the effect of wall conduction on it are
discussed and the following conclusions are derived.

The interfacial temperature varies in a wide range;
from a value much lower than the ambient tempera-
ture, 0 = 0, to that higher than the bulk stream tem-



Heat and mass transfer with a boundary layer flow past a flat plate of finite thickness

perature, § =1. The local Nusselt number also
changes beyond the lower and upper limits for pure
conjugate heat transfer for the cases with the constant
temperature and constant heat flux on the outer plate
surface. Furthermore, a discontinuity occasionally
appears in the Nusselt number distribution.

The local Sherwood number also shows such
behavior as that of the local Nusselt number, how-
ever, both behaviors are not analogous even when
the Prandtl and Schmidt numbers have the same
value.

In general, the characteristics in heat and mass
transfers are highly conjugated with each other and
significantly influenced by the temperature depen-
dency of the vapor-liquid equilibrium, the magnitude
of the latent heat of the phase change and the thermal
conductance of the flat plate. Only in a few cases with
a very small Biot number or extremely large thermal
conductance of the plate, can the situation be properly
predicted from the solutions of the simplest heat trans-
fer problems as treated by Pohlhausen and that for
mass transfer derived analogously from the heat trans-
fer analyses.
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TRANSFERT DE CHALEUR ET DE MASSE POUR UN ECOULEMENT A COUCHE
LIMITE SUR UNE PLAQUE PLANE D’EPAISSEUR FINIE

Résumé—On analyse théoriquement Pévaporation a partir d’une surface de plaque plane pour un écou-
lement a couche limite laminaire en prenant en compte la conduction thermique bidimentionnelle dans la
plaque avec une condition limite thermique de convection sur 'autre face de la plaque. L’effet thermique
de la volatilité¢ du liguide sur la plaque est négligé. Des distributions de température interfaciale et de
nombre de Nusselt et de Sherwood locaux sont calculées pour un écoulement paralléle ayant des nombres
de Prandt] et de Schmidt égaux & 1'unité. Les caractéristiques du transfert de chaleur et de masse sont
significativement influencées par la dépendance vis-d-vis de la température de P'équilibre liquide-vapeur,
Pimportance de la chaleur latente de changement d’état et la conductance thermique de la plaque plane.

WARME- UND STOFFUBERTRAGUNG IN EINER GRENZSCHICHTSTROMUNG
UBER EINE EBENE PLATTE ENDLICHER DICKE

Zusammenfassung——Dic Verdampfung von der Oberfliche einer ebenen Platte in eine laminare
Grenzschichtstromung lings der Platte wird theoretisch untersucht. Dabei wird die zweidimensionale
Wirmeleitung in der Platte, und die konvektive Randbedingung an der anderen Plattenoberfliche beriick-
sichtigt. Einfliisse, die sich méglicherweise bei der Zufuhr der verdampfbaren Fliissigkeit ergeben, werden
vernachlissigt. Fiir eine parallele Strémung, bei der sowohl die Prandtl-Zahl als auch die Schmidt-Zahl
gleich eins ist, werden die Verteilungen der Grenzflichentemperatur sowie der Ortlichen Nusselt- und
Sherwood-Zahl berechnet. Das Verhalten des Wirme- und Stoffiibergangs wird wesentlich von der Tem-
peraturabhingigkeit des Dampf-/Fliissigkeitsgleichgewichts, von der Grofle der Verdampfungsenthalpie
und von der Wirmeleitfahigkeit der ebenen Platte beeinflufit.

TEIIO- 1 MACCOITEPEHOC B MMOTPAHWUYHOM CJIOE HA TUIOCKOH ITIACTHHE
KOHEYHOH TOJIHHbBI

AmHOTAEHS—TCOPETHYECKH AHAJIM3UPYETCA TEIUIO- H MACCONEPEHOC NPH HCHADEHHH B JaMHHAPHOM
NOTPaHMYHOM CJIOC Ha IUIOCKOH ILUTACTHHE C Y4ETOM OBYMEDHOH TEIUIONPOBOAHOCTH B ILTACTHHE H rpa-
HHMYHOTO YCJIOBMA 3-ro poAa Ha Apyroi nosepxHocTH. Terutosoil sdipekT noasoaa neTydell KAIKOCTH K
IUTACTHHE HE NPHUHAMAETCH BO BHHMaHHMe. PaccuMTHIBAIOTCH pacnpesc/ieHHe TEMNEpaTyp Ha IpaHHIe
pasjiena, a Takke JokadsHule yncaa Hyccenbra m Iepsyna B ciydae, xoraa uucia Ilpammras u
IMmuara passnl emmmnne. [Tokasano, YTo Ha XapaKTEPHCTHKH TEIUIO- H MACCOIEPEHOCa 3HAYHTEILHOS
BJIASHAE OKA3LIBAET 3ABHCHMOCTE JABJICHAA HACKLIEHHKX NAPOE OT TEMIIEPATYPHI, BEHYMHA CKPHITOl
TennoTe! Ga30BOro NPEBPALLEHHs, 3 TAKKE TEIUIONPOBOAHOCTh INOCKOH ILTACTHHEL,



