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Abstract-Evaporation from a flat-plate surface to a laminar boundary layer flow past the plate is 
theoretically analyzed, taking into account the two-dimensional thermal conduction in the plate, with the 
convective thermal-boundary condition on the other plate surface. The thermal effect of the volatile liquid 
supply to the plate is neglected. Distributions of the interfacial temperature and the local Nusselt and 
Sherwood numbers are calculated for a parallel flow where both Prandtl and Schmidt numbers are equal 
to unity. The characteristics in heat and mass transfer are revealed to be significantly influenced by the 
temperature dependency of the vapor-liquid equilibrium, the magnitude of the latent heat of phase change, 

and the thermal conductance of the flat plate. 

1. INTRODUCTION 

IN ABLATION or perspiration cooling problems and 
heterogeneous chemical reaction problems, infor- 
mation on the interfacial temperature and con- 
centration distributions is essential because the trans- 
fer characteristics are mainly determined by the 
temperature and concentration differences between 
the bulk flow and the interface. As a fundamental 
study for those problems, analyses of the conjugate 
thermal problem between convective heat transfer and 
thermal conduction in the neighboring flat plate wall 
are of great interest. In cases with chemical reaction, 
for instance, combustion problems might be too com- 
plicated to be dealt with analytically, taking account 
of the thermal conduction in the wall, because not 
only concentration and temperature dependence of 
the reaction rate but also transfers of various kinds of 
reactants and products make such problems more 
difficult to analyze even though the wall conduction 
is negligible [ 11. 

For coupling of convective heat transfer in a bound- 
ary layer flow over a flat plate of finite thickness with 
two-dimensional thermal conduction in the plate, a 
leading study was presented in 1961 by Perelman [2] 
for a case with heat generation in the plate. He derived 
theoretical expressions for the interfacial temperature 
and the local Nusselt number. The investigation was 
extended to a case with a compressible gas flow by 
Luikov et al. [3]. They presented analytical solutions, 

t Present address : Tonen Chemical Corp., Ukishima-cho, 
Kawasaki 210, Japan. 

taking into account the fluid viscosity dependent on 
the temperature. However, in both articles no numeri- 
cal results were given. Later, a case with a flat plate 
of finite length was comprehensively analyzed in detail 
in ref. [4], by expanding the interfacial temperature 
e(x) into a power series of Jx with unknown 
coefficients to be determined. The interfacial tem- 
perature and the local Nusselt number for cases with 
the first- and second-kind boundary conditions on the 
outer plate surface were calculated. It was found that 
the interfacial temperature is influenced markedly by 
the wall conduction when the plate is short and/or 
thick and its thermal conductivity is high in com- 
parison with that of the fluid. 

On the other hand, a one-dimensional approxi- 
mation of the conduction process in a flat plate has 
been introduced, for example, by Luikov [5] and most 
recently by Pozzi and Lupo [6] for simplicity and 
practical uses or further theoretical extensions. The 
validity and the applicability of the simplification 
must be examined by detailed analyses including the 
axial thermal conduction. 

In the present study, evaporation from a surface of 
a porous flat plate of finite thickness filled with a 
volatile liquid to a boundary layer flow is theoretically 
analyzed as an extension of the previous work [4], by 
combining the mass transfer with the conjugate heat 
transfer between the flow and the plate through the 
vapor-liquid equilibrium relationship. In the analysis, 
the two-dimensional thermal conduction in the plate 
is accounted for to clarify the axial conduction effect 
and the outside thermal condition is specified as the 
third kind. However, influence of the liquid flow in 
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NOMENCLATURE 

u coefficient in equation (12) [kg m 3 K ‘1 Cl coefficient in equation (14) [m ’ In s ! ] 
A dimensionless coefficient, 11 velocity component [m s ‘1 

n(T, - Th)/(C - C,) I coordinate along flat plate [m] 
b constant in equation (12) [kg mm ‘1 X* dimensionless coordinate, x/L 
B dimensionless constant, 4 coordinate perpendicular to plate [m] 

(Cl? - C,)/(C, - Ccc) L’* dimensionless coordinate, y/L 
Bi Biot number, h6jkw .f dimensionless coordinate, y/S 
C concentration [kg m- ‘1 Y,(q) normalized function defined in equation 
C* dimensionless concentration, (42) 

(C-C,)I(C,-C,) Z 1+c*. 
C, saturated concentration at T,, [kg mm “1 

C, saturated concentration at T, [kg m- ‘1 Greek symbols 
D diffusion coefficient [m’ s- ‘1 
h heat transfer coefficient between plate ;, 

thermal diffusivity [ml s ‘1 
coefficient in power series 

and ambient fluid [W me2 K ‘1 6 thickness of flat plate [m] 
H dimensionless latent heat of similarity variable, (y/2)(u,/(vx)} “’ 

vaporization, : dimensionless temperature, 
%C, - CA/{ pc,AT, - T,)j (T- T,)/(T, - Th) 

j (i- I)/2 i latent heat of vaporization [J kg- ‘1 
k thermal conductivity [w mm ’ Km ‘1 V kinematic viscosity [m” s-- ‘1 
L plate length [m] P fluid density [kg m- ‘1 
L* aspect ratio of plate, S/L t, coefficient in power series, to be 
m index in equation (14), parameter determined 

relating to plate inclination cp dimensionless stream function, equation 
M,(n) normalized function defined in equation (20) 

(47) ti stream function, (u,vx) “‘4(q). 

NUX local Nusselt number, equation (61) 
Pr Prandtl number, V/E Subscripts 
R, ratio of thermal conductances of plate f boundary layer flow 

and stream, k, L/(k&?) h ambient fluid 
SC Schmidt number, v/D i boundary layer-plate interface 

& local Reynolds number, u,x/v W plate 

Re, local Reynolds number at x = L, u, L/v x component in the x-direction 

Sh, local Sherwood number, equation (62) Y component in the y-direction 
T temperature [K] c/j outside of boundary layer. 

the porous plate due to the liquid supply on heat 
transfer is neglected to simplify the problem. Dis- 
tributions of interfacial temperature, the local Nusselt 
and local Sherwood numbers were calculated for a 
parallel-flow case where the Prandtl and the Schmidt 
numbers are equal to unity. The effects of wall con- 
duction and the interaction of heat and mass transfer 
on them are discussed in detail and verified the validity 
of the traditional analogy concept between the heat 
and mass transfers. 

2. THEORETICAL ANALYSIS 

The problem analyzed in the present work is such 
that a gas of temperature T,, concentration C, and 
velocity u, passes under the laminar flow condition 
over a flat plate of thickness 6, length L and with 
an inclination angle ma/(m+ 1) to the flow (m = 0 
corresponds to a flow parallel to the plate and m = 1 

to a stagnation flow). The plate is porous and com- 
pletely filled with a volatile liquid, and the plate sur- 
face is covered with a very thin and stagnant liquid 
film. The heat and mass transfers through the front 
end of the plate are assumed to be negligibly small 
in comparison with that through the plate surface, 
similarly in the literature [24]. This is consistent with 
the boundary layer approximation of the Navier- 
Stokes equations. The trailing edge is connected with 
a semi-infinite insulated plate. The opposite surface 
of the plate is exposed to an ambient fluid stream of 
temperature T,, lower than that of the gas stream 
and the ambient convection is described by the heat 
transfer coefficient h. 

Under such a situation, heat is transferred from the 
bulk flow to the interface through the developing 
boundary layer along the plate wall and the liquid 
vaporizes and diffuses from the liquid film on the plate 
surface to the free stream. The rates of heat and mass 
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transfers are not independent but conjugated with (4) energy dissipation due to fluid viscosity is neg- 
each other by the characteristic equilibrium relation, ligible ; 
being different from that in simple heat or mass trans- (5) thermal conduction and mass diffusion in the x- 
fer problems. Therefore, the characteristics of heat direction in the fluid can be neglected in comparison 
transfer and mass transfer cannot be predicted easily with those in the y-direction ; 
from the solutions of simple heat or mass transfer (6) injection accompanied by vaporization has no 
problems. But it can be derived if the momentum and influence on flow condition ; 
energy equations of the gas flow and the conduction (7) gas at the interface is saturated at the interfacial 
equation of the plate wall are solved simultaneously temperature and its equilibrium relation can be ex- 
under the conjugate boundary conditions describing pressed by a linear function of temperature. 
the continuities of temperature and energy flux and 
the vapor-liquid equilibrium at the interface. 2.1. Governing equations 

The present analysis is suitable for the following The governing equations in momentum, heat and 
cases : (1) sublimation or ablation of a flat plate where mass boundary layers can be formulated as follows 
a decrease in the plate thickness is relatively small ; for the two-dimensional steady-state problem. 
(2) perspiration cooling of a flat plate where liquid 2.1.1. Fundamental equations for$uid$ow. 
vaporizes only from the plate surface ; (3) chemical Equation of continuity 
reaction on the plate surface where mass transfer 
in the boundary layer flow is rate-controlling ; (4) 
vaporization from a stagnant liquid film on a plate 

$+a,,=0 
ay 

(1) 

where a decrease in the film thickness and the thermal and eauation of momentum transfer in the x-direction 
resistance of the film are comparatively small and 
negligible. 

This model includes a special case with a constant 
temperature on the opposite wall surface, which is 
obtained as a limit case when h approaches infinity. 
The analyzed states of the bulk stream, the interface 
and the ambient temperature are shown in a tem- 
perature-concentration plane of Fig. 1. In the figure, 
C, and C,, refer to the concentrations saturated at the 
bulk-stream temperature T, and the ambient fluid 
temperature T,,, respectively. 

The coordinate system used in the present analysis 
is such that the origin is at the leading edge, the 
abscissa x along the plate and the ordinate y normal 
to the plate surface. 

To simplify the theoretical analysis, the following 
assumptions are introduced : 

(1) gas is incompressible Newtonian fluid ; 
(2) all physical properties are constant, being inde- 

pendent of either temperature or concentration ; 
(3) bulk-stream velocity is described by equation 

(14) of the Falkner-Skan flow ; 

Equilibrium 
Curve,/ 

Temperature 

FIG. 1. Relation between equilibrium curve and driving 

au, au, ah, au, 
ux&+“Yay=VayZ+Um~ 

with boundary conditions 

at x = 0, u, = u, 

at y = 0, u, = UY = 0 

at y = 03, u, = u,. 

Equation of energy transfer 

aTf +-v = 
a*Tf 

aay2 
with boundary conditions 

at x = 0, Tr = T, 

at y = 0, Tr = Ti(x) 

aty= co, Tf = T,. 

Equation of mass transfer 

ac ac 2 ux--+uy-=D~c 
ax ay ay* 

with boundary conditions 

at x = 0, c=c, 

at y = 0, C = Ci(x) = aTi(x)+b 

aty= co, C= C,. 

Bulk-stream velocity of Falkner-Skan flow 

%Z = Ux”. 

2.1.2. Fundamental equations for wall. 
Equation of wall heat conduction 

a’T, a=r, 

ax* ’ ayZ= 0 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

forces. with boundary conditions 
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at .y = 0 and L, dT,/C;x = 0 (16) 

al ?’ = 0. TC = T,(x) (17) 

at j’ = -6. 
C: T, 

-k,, ~~~ 
?.l 

= h(T, - T,). (18) 

In the above, equations (8) and (17) are the con- 
jugation of the temperature continuity at the stream- 

wall interface. and equation (12) is that of heat and 
mass transfers through the equilibrium. The last con- 
jugate relation is given as follows. 

Conjugate boundary condition on energy flux 

2.1.3. Normalization. First, to rewrite the fun- 
damental equations for the boundary layer flow, we 
introduce the following similarity variable and stream 
function : 

Second, to normalize the entire problem, dimen- 
sionless variables and parameters are defined as 

followc : 

(j = (T- Th) (C-C,) 
(T,-T,)’ c* = (CT-c, ); 

Bi = hSikw : R, = (k,L)/(k,S) ; L* = 6/L: 

Pr = v,:r ; SC = II/D; 

On the basis of the previous assumption (7), and 

by referring to Fig. I. it can be seen that parameter A 

is equal to the ratio of segment RS to segment RP and 
B is that of SP to RP. Accordingly B is dependent of 
A and can be expressed as B = 1 -A. 

Thus all equations (I)--(19) are rewritten as follows. 

Equation for stream function 

with boundary conditions 

at n = 0, 4 = 0 and d4jdq = 0 

atn= x. d&dn = 2. 

Energy equation for fluid stream 

(22? 

(23) 

with boundary conditions o,(x*,r) = 1+Ql(x*,q)+~,(~*~v) 

at s* = 0. n,-= 1 (25) +O1(x*,‘l)+...+t),(x*,~)+,... (41) 

at n = 0, (3,- = 0,(X*) (26) 

atq= cc, or= I. (27) 

Mass transfer equation 

with boundary conditions 

at .s* = 0. C* = 0 (29) 

at v = 0. C* = C’,*(x*) = A&(x*)+ B (30) 

at ‘1 = IX, c* = 0. (31) 

When a new variable Z(x*, q) = I+ CT* is introduced, 
the above problem is rewritten as 

with boundary conditions 

at .Y* = 0, Z = 1 (33) 

at ?j = 0, z= I+C,*(x*) = Afi,(x*)+B+l (34) 

atq = ‘x. Z= I. (35) 

Consequently, the mass transfer equation and the 
boundary conditions arc reduced to the same equa- 
tions as those for the energy transfer, equations (24)) 
(27). In the above and hereafter the prime denotes 
differentiation with respect to n. 

Energy equation for wall 

with boundary conditions 

at .Y* = 0 and I. ?O,/(;‘X* = 0 (37) 

at?=0 f),, = 0; (x*) (38) 

atj= -1, P0,jaj = - Bi 0,. (39) 

Conjugate boundary condition on energy flux at 
interface 

(40) 

2.2. Solution procedure 

The momentum boundary layer problem, equa- 
tions (21)-(23), is a two-point boundary value 
problem. Since it is hard to solve analytically, numeri- 
cal analysis is required. 

The solution of the energy equation is assumed to 
be in the following infinite series as in the previous 
work [4] : 
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Furthermore, we assume the dependency on x* as 
follows : 

where 

e,(x*, q) = 1+ f zix*‘q(?J) (42) 
i= 1 

j = (i- 1)/2. 

Then we obtain the following ordinary differential 
equation with respect to q(q) : 

with boundary conditions 

atn=O, 5 = 1 (44) 

atq=co, Yj = 0. (45) 

Consequently the interfacial temperature is rep- 
resented by 

0,(x*) = f$(x*, 0) = 1+ f z,x*j. (46) 
i= I 

On the other hand, the mass transfer problem is 
treated in a similar way, that is, we assume the fol- 
lowing solution : 

z(x*, q) = 1+ c*(x*, P/) = 1+ f /Iix*‘Mj(q) 
i=l 

(47) 

where 

j = (i- 1)/2. 

Then the following ordinary differential equation with 
respect to Mj(q) is obtained : 

with boundary conditions 

atr=O, M, = 1 (49) 

atq= co, Mj=O. (50) 

Accordingly the interfacial concentration becomes 

at rl = 0, z(x*, 0) = 1+ c:(x*) = I$2 Bix*j. 
I= 1 

(51) 

At the interface, the equilibrium relation should be 
satisfied, thus 

ci*(x*) = Aei(x*)+B= B+A z;x*j 
> 

. 
\ i= 1 

Consequently values of pi are combined with 
of zi as 

(52) 

values 

/I, = A(l+7,)+B and /Ii = Azi. 

Taking into account the linear dependency of the equi- 
librium at the interface, we have 

/I, = l+Az,. (54) 

The preceding two ordinary differential equations 
with respect to Yj(q) and M,(q) are of the same two- 
point boundary value problem with different par- 
ameter. These equations and 4(q) can be solved 
simultaneously by numerical integration. 

On the contrary, the heat conduction equation for 
the wall can be solved analytically by applying the 
traditional technique of separation-of-variables 

&(x*,9) = 

nnL* cash {nxL*(l +j)} 

+2 f 
+ Bi sinh (nnL*( 1 +9)} 

R = , nnL* cash (naL*) + Bi sinh (PULL*) 

(55) 

In these equations, the coefficients zi and /Ii are 
unknown. These coefficients can be determined in the 
following way. 

The conjugate boundary condition on the inter- 
facial energy flux, equation (40), is modified to give 
the following two equations : 

1 ae, s -I 0 ay*,*=o 
&*_R, ‘as, s I 0 a? jr=0 

dx* 

dx* = 0 (56) 

1 at+ 

s -I 0 +*y*=o 
cos {(N- l)ax*} dx* 

_R, ‘ae, 
s I 0 39 i=o 

cos {(IV- 1)77x*} dx* 

cos {(N- 1)71x*} dx* = 0 (57) 

where 

N = 2,3,4, . . . . 

The dimensionless temperature gradient at the 
interface on the fluid side is calculated from equation 
(42) as 

36 ah att 
aY* y* = 0 all ay* ‘1=o 

= + (;E, q~*(~-~)/~ y:(O)) (58) 

and that at the plate-side interface from equation (55) 
(53) as 
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L nrrL* tanh (nnL*) + Bi +2 1 -~~-.~~-.-~-‘~- 
,) = , nxL* + Bl tanh (nnL*) 

[“- “,* cos (WC<) d< 
i 

(59) 

Similarly the interfacial concentration gradient is also 
derived from equation (47) as follows : 

(60) 

After substituting equations (58)-(60) into equa- 
tions (56) and (57), we obtain a set of simultaneous 
arithmetic equations with respect to values of 7,. If the 
set of arithmetic equations is solved to determine the 
coefficients r,, the other coefficients pi, the interfacial 
temperature gradients and the concentration gradient 
at the interface can be calculated from the values of 

z,. 
The local Nusselt number and the local Sherwood 

number are defined as follows : 

(61) 

(62) 

where 0.2,- 7 

Re, = u,n/v, j = (i- 1)/2. 

According to classical investigations on heat trans- 
fer with a laminar boundary layer flow over a flat 
plate, the local Nusselt number is given for a constant- 
wall-temperature case [7] as 

Nu, = 0.332J(Re,)Pr’j7 (63) 

and for the case with constant interfacial heat flux [8] 
as 

Nu, = 0.453J(Re,)Pr”3. (64) 

3. NUMERICAL RESULTS AND DISCUSSION 

The present numerical calculations are those for the 
case with a flow parallel to the plate where m = 0, and 
Pr and SC are both equal to unity. The dimensionless 
plate thickness is fixed at L* = 0.03. The other 

parameters are changed in the following ranges: 
500<Re,<50000; l<R,<50000; O.Ol<Bid 
5000;0.1 <A<4; -5O<H<50. 

As both Pr and SC are unity in the present cal- 

culations. equations (63) and (64) can be modified 
respectively as follows : 

for the constant-wall-temperature case 

Nu,JJ( Re,) = 0.332 ; (65) 

for the case with constant interfacial heat flux 

NuJj(Re,) = 0.453. (66) 

Analogous relations for the mass transfer are given as 
follows : 

for the constant-wall-concentration case 

Sh,?/,/(Re,) = 0.332 ; (67) 

for the case with constant interfacial mass flux 

Sh y/v’(Re,) = 0.453. (68) 

The above relations, equations (65) and (67), are rep- 
resented by a broken line in the following graphs of 
local Nusselt number and local Sherwood number. 

Figure 2 shows the interfacial temperature dis- 

tributions for various values of Rr,.. The other par- 
ameters are Bi = 1000, H = IO. R, = 100, and 
A = 0.4. The value of Bi corresponds to a situation 
with constant temperature on the opposite plate 
surface, because the effect of the outer convection is 
negligibly small. 

The interfacial temperature for all values of Re, is 

negative in the whole range of .Y*, implying that the 
vaporization markedly lowers the interfacial tem- 
perature. It is found that the energy for the vapor- 
ization is supplied not only from the gas stream but 
from the ambient fluid through the flat plate, and that 
the interfacial temperature decreases with an increase 

in Re, In a simple problem with pure heat transfer, 

a;' -0.6 

-0.8 

FIG. 2. Interfacial temperature distributions (Bi = 1000. 
H = 10, R, = 100, A = 0.4, Pr = S = 1.0. L* = 0.03). 
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-0.2, 

-0.4 - 

an increase in Re, enhances the transfer rate between 
the stream and the plate, as in a simple mass transfer 
problem. An increase in Re, prompts both heat and 
mass transfer rates, but the mass transfer from the 
surface lowers the interfacial temperature. Thus an 
increase in Re, leads to two opposing effects on the 
temperature field, namely, a rise in the interfacial tem- 
perature due to the improvement of heat transfer from 
the bulk stream to the plate, and a decrease in the 
interfacial temperature due to enhanced vaporization. 
The change in the interfacial temperature resulting 
from an increase in Re, is determined by the inter- 
action of these effects through the equilibrium 
relationship. 

s” 

Bi = 0.01 

I I, I - I, 8 I 
0 0.5 I .o 

X’ 

In Fig. 3, two graphs show the local Nusselt number 
and Sherwood number in the form of NuJJ(Re,) 

and Sh,/,/(Re,), respectively, under the same con- 
ditions as in Fig. 2. In the whole x* region, the curves 
of Nu.JJ(Re,) are lower than predicted by equation 
(69, and the curve for Re, = 500 is the lowest and 
has the most abrupt decrease in the small x* region. 
Such a tendency in the curve is caused by the marked 
rise in interfacial temperature along x*. Generally the 
Nusselt number increases with Re, because of the 
enhanced heat transfer. 

FIG. 4. Interfacial temperature distributions (Re, = 1000, 
H = 10, R, = 100, A = 0.4, Pr = SC = 1.0, L* = 0.03). 

Re, = 1000 and the other parameters are the same as 
those for Figs. 2 and 3. 

The curves of Sh,/J(Re,) in Fig. 3 are about 5- 
15% higher than the analogous relation of equation 
(67). Those at Re, = 500 and 1000 have a maximum 
near the leading edge. The curve at Re, = 50000 is 
the closest to equation (67) and the change with x* is 
small and monotonic. 

Figures 4 and 5 show the dependencies of the inter- 
facial temperature, Nu,/,/(Re,) and Sh,/,/(Re,) on 
the opposite side convective heat transfer. In these 
figures, the Biot number is varied while keeping 

When Bi is small, the interfacial temperature is low, 
and inversely NuJ,/(Re,) is high and close to equa- 
tion (65). On the other hand, Sh,/J(Re,) gets lower 
with a decrease in Bi and also approaches the anal- 
ogous relation, equation (67). For Bi 2 100 the inter- 
facial temperature loses its dependency on Bi, there- 
fore it can be approximated as a case with constant 
temperature on the opposite plate surface. Fur- 
thermore, as Bi decreases, heat transfer resistance 
in the ambient fluid becomes dominant in the heat 
transfer process. Finally the outside boundary con- 
dition approaches almost adiabatic as Bi becomes less 
than 0.01. Under this extreme condition, heat and 
mass transfers take place in such a way that they are 
balanced well with each other during the development 
of boundary layers along the plate. In the present case 
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I 

0.32 

0.381 I 

z’ 

0.30 

0.38 
Bi 2 100 

FIG. 3. Distributions of local Nusselt and local Sherwood 
numbers (broken line, equation (65) ; Bi = 1000, H = 10, 

FIG. 5. Distributions of local Nusselt and local Sherwood 

R, = 100, A = 0.4, Pr = SC = 1.0, L* = 0.03). 
numbers (broken line, equation (65) or (67) ; Re, = 1000, 

H = 10, R, = 100, A = 0.4, Pr = SC = 1.0, L* = 0.03). 



of Pr = SC = 1, where the plate is almost thermally 
insulated from the ambient, each boundary layer 
develops along the plate in exactly the same manner. 
Consequently at Bi = 0.01 the interfacial temperature 
distribution is flat and uniform in the whole range of 
.Y*. which leads to a uniform distribution of interfacial 
concentration. In this case the interfacial temperature 
can be estimated by the solutions of two separate 
problems on heat and mass transfers, by balancing 
the heat flux and the latent heat of vaporization cor- 

responding to the mass flux at the interface. 
For various values of R,, which is the measure of 

the wall conductance, distributions of the interfacial 
temperature, Nu,/,/‘( Re,) and Sh,,!,/( Rr,) are shown 
in Figs. 0 and 7. The other parameters are as t’ollows : 

i 

I1 :. .I 
0 0.5 I .o 

X* 

FIG. 6. Interfacial temperature distributions (Rr, = 5000, 

Bi = 1000, i3 = 10, A = 0.4, Pr = SC = 1.0. .L* = 0.03). 

0.32 

0.36 

FIG. 7. Distributions of local Nusselt and local Sherwood 
numbers (broken line, equation (65) or (67) ; Re,. = 5000, 
B~=~~~O,H=~O,A=O.~,P~=SC=~.O,L*=O.O~). 

Re, = 5000, Bi = 1000, H = 10 and A = 0.4. The 
interfacial temperature is higher at a larger R,, and 
the curve at R, = 50000 is practically equal to zero, 
which is the outer plate surface temperature. Con- 

cerning Nu,/J(Re,) and Sh,/j(Re,), the following 
characteristic behaviors are observed : Nu,jvl’(Re,) 

between about x* = 0.2 and 0.8 is the smallest at 
about R, = 500, and Sh,i,/(Rp,) between about 
.Y* = 0.15 and 0.75 is the largest at about R, = 200 ; 
and for two extremes of R,, 1 .O and 50 000, the results 
almost agree with 0.332. The other aspect in the dis- 
tribution differences from the previous figures, is that 
some of the curves, for example, the Sh,/d’(Re,) dis- 
tribution at R, = 1000. show a change which is not 
monotonic and has a steep rise and fall along the 
.r*-axis. 

In Figs. 8 and 9, the distributions of the interfacial 

2.0 -__ 

X* 

FIG. 8. Interfacial temperature distributions (Re, = 5000. 
Bi= 1000, H = 10, R, = 100, Pr = SC = 1.0, L* = 0.03). 

,2.0 

x 

i 

I.0 

H 
\ 0.6---' 

0.4 

\ 0.30 
,x 

0.2 

Fm. 9. Distributions of lOd Nusselt and local Sherwood 
numbers (broken line, equation (65) or (67); Re,, = 5000, 

Bi = 1000, H = 10, R, = 100, Pr = SC = 1.0, L* = 0.03). 



temperature, Nu,..J(Re,) and Sh,/J(Re,), are shown 
for various values of A which is the measure of the 
temperature dependency of the equilibrium curve for 
a given system. The other parameters are fixed at 
Re, = 5000, Bi = 1000, H = 10 and R, = 100. The 
interfacial temperature at a smaller value of A is lower 
and changes more significantly with x*. The curve of 
Nu,/J(Re,) for A = 1 is roughly represented by equa- 
tion (65), as shown in Fig. 9. Furthermore, at A = 2.0 
and 4.0, Nu,/J(Re,) is larger than 0.332, being differ- 
ent from the distributions in Fig. 7. The curves of Sh,/ 
J(Re,) behave in a manner completely different from 
those of Nu,/J(Re,). That is, for A < 0.6, Sh,/,/(Re,) 

does not vary so much with x*, however, Sh,/J(Re,) 

is the lowest at A = 1.0 and the highest at A = 2.0. 

Hereafter, the influence of the parameter H, which 
is the dimensionless latent heat of vaporization, on 
heat and mass transfer characteristics, will be dis- 
cussed. 

For various positive values of EZ, the interfacial 
temperature, Nu,/J(Re,) and Sh,/,/(Re,) are shown 
in Figs. 10 and 11. The situation considered in these 
figures corresponds to that shown in Fig. 1 where the 
ambient temperature is lower than that of the bulk 
stream. Conditions for the numerical calculations are 
fixed as follows: Re, = 5000, Bi = 1000, R, = 100 
and A = 0.4. 

At H = 0.0, conjugate heat transfer takes place 
although only the mass transfer is affected by the heat 
transfer. In the graph, the interfacial temperature is 
lower at a higher H, showing that the cooling effect 
of vaporization is substantial. The mass transfer effect 
is not appreciable for H < 0.01, because the results 
agree with each other in the range of 0.01 < H < 0.0. 
On the other hand, though the interfacial temperature 
is low at H = 50, its thermal driving force, the tem- 
perature difference between the bulk flow and the 
interface, is almost uniform in the whole range of x*. 
This means that the mass transfer brings the local 
Nusselt number distribution close to that for the con- 
stant-wall-temperature condition, equation (65). Such 
a behavior is clearly observed in Fig. 11, where Nu,/ 

I,.,, 

OO 0.5 I .o 

X* 

FIG. 12. Interfacial temperature distributions (negative H; 
Re, = 5000, Bi = 1000, R, = 100, A = -0.4, Pr = SC = 

1.0, L* = 0.03). 

FIG. 10. Interfacial temperature distributions (positive H; 
Re, = 5000, Bi = 1000, R, = 100, A = 0.4, Pr = SC = 1.0, 
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FIG. 11. Distributions of local Nusselt and local Sherwood 
numbers (positive H; broken line, equation (65) or (67) ; 
Re, = 5000, Bi = 1000, R, = 100, A = 0.4, Pr = SC = 1.0, 

L* = 0.03). 

J(Re,) shows the lowest curve at about H = 5.0 and 
10, which is less than 0.332 given by Pohlhausen [7]. 
The curves of Sh,/J(Re,) monotonously spread with 
Hover a range around 0.332. 

Figures 12 and 13 show the results for negative 
values of H. The situation considered in these figures 
corresponds to the case where the ambient tem- 
perature is higher than that of the bulk stream. The 
conditions for numerical calculations are specified as 
Re, = 5000, Bi = 1000, R, = 100 and A = -0.4. The 
curve of Nu,.,/(Re,) at H = - 50, not shown in the 
upper graph of Fig. 13, almost agrees with that of 
H = - 20. The interfacial temperature at H = - 50 is 
the highest, however, the driving force for heat trans- 
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____________________-____^_____ 
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FIG. 13. Distributions of local Nusselt and local Sherwood 
numbers (negative H; broken line, equation (65) or (67); 
Re, = 5000, Bi = 1000, R, = 100, A = -0.4, Pr = SC = 

1.0. L* = 0.03). 

fer is less dependent on x* in comparison with those 
for the other values of H. This small change in the 
temperature difference along the x*-axis gives the 
local Nusselt number distribution close to equation 

(65), as shown in the upper graph of Fig. 13. Appear- 
ance of a discontinuous point is notable in the NIL,/ 
J(Re,) d’ t ‘b t’ IS ri LI ion for -0.5 > H > -2.0. On the 
other hand, Sh,/J(Re,) is higher at a lower H, with- 
out any higher or lower limit of influence. 

Further discussion will be made below, based on all 
of the above numerical results. 

According to the previous study on pure heat trans- 

fer with boundary layer flow with thermal conjugation 
between the flow and the plate wall [4], the interfacial 
temperature settles down between 0 = 0 and I (the 
temperatures of the ambient and bulk stream, respec- 
tively) due to the thermal interaction. The resulting 
distribution of the local Nusselt number has an inter- 

mediate curve between equation (66) as the upper 
limit for the constant-wall-heat-flux case and equation 
(65) as the lower limit for the constant-wall-tem- 
perature case. Generally the local Nusselt number 
rises with an increase in the thermal driving force 
with x*, i.e. an increase in the temperature difference 
between the interface and the bulk stream. 

In the present problem, the interfacial temperature 
varies in a range much wider than 0 < 0 < 1, and the 
local Nusselt number and local Sherwood number 
also change beyond the two limiting values for the 
constant-wall-heat-flux and constant-wall-tempera- 
ture cases, as mentioned above. Furthermore, the 

distribution of the Nusselt number has a dis- 
continuous point occasionally as in the upper graph 
of Fig. 13. and probably the distribution of the Sher- 
wood number as well, as suggested in the lower graph 
of Fig. 9. Thus the interaction between mass transfer 
to the boundary layer flow and conjugate heat transfer 
with the flow and the plate wall, is not straight- 
forward, and this effect is hard to estimate properly 
from the solutions of the simplest heat transfer prob- 
lems treated by Pohlhausen and Kays and those for 

mass transfer derived analogously from the heat trans- 
fer. The present comprehensive analysis becomes sig- 
nificant and effective in order to obtain theoretical 
prediction. especially for cases where the vapor-liquid 
equilibrium is highly temperature dependent and/or 
latent heat of vaporization is large. 

Appearance of a discontinuity in the distribution 
of the local Nusselt number can be explained as 
follows. As an example of such a case, the results at 
H = - 2.0 shown in Figs. 12 and 13 will be considcrcd. 

The interfacial temperature gradually decreases along 
the x*-axis and cuts across the line of 0, = 1 .O at 
.x* = 0.37. This means that the superficial driving 
force of the heat transfer changes from negative to 
positive at the intersection. On the other hand, in the 
vicinity of the leading edge, the local heat flux is in the 

direction from the interface to the bulk stream and 
changes its direction downstream. But the change 
in the heat-flux direction does not synchronize with 
a decrease in the apparent driving force. This mis- 
match causes a discontinuity in the local Nusselt 
number distribution. In the case of mass transfer 
also, the appearance of a discontinuity in the local 
Sherwood number could be explained in a similar 

manner. 

4. CONCLUSION 

Theoretical analysis has been conducted for evap- 
oration to a laminar boundary layer flow from a flat 

plate surface, where the convective heat and mass 
transfers and the two-dimensional thermal con- 
duction in the plate are combined simultaneously. The 
conjugation is achieved by taking into account the 
vapor--liquid equilibrium of linear temperature depen- 
dence at the interface, the latent heat of vaporization 
and the continuities of temperature and heat flux at 

the interface. Convective heat transfer described by a 
constant heat transfer coefficient is assumed in the 

ambient fluid. 
Numerical calculations have been made for the par- 

allel flow case where both values of the Prandtl and 
Schmidt numbers are unity. Based on distributions 

of the interfacial temperature, Nu,/J(Re,) and Sh,i 
J(Re,) obtained, the interaction of heat and mass 
transfers and the effect of wall conduction on it are 
discussed and the following conclusions are derived. 

The interfacial temperature varies in a wide range ; 
from a value much lower than the ambient tempera- 
ture. B = 0. to that higher than the bulk stream tem- 
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perature, @ = 1. The local Nusselt number also 
changes beyond the lower and upper limits for pure 
conjugate heat transfer for the cases with the constant 
temperature and constant heat flux on the outer plate 
surface, Furthermore, a discontinuity occasionally 
appears in the Nusselt number distribution. 

The local Sherwood number also shows such 
behavior as that of the local Nusselt number, how- 
ever, both behaviors are not analogous even when 
the Prandtl and Schmidt numbers have the same 
vahre. 

In general, the characteristics in heat and mass 
transfers are highly conjugated with each other and 
significantIy influenced by the tenlperature depen- 
dency of the vapor-liquid eq~librium, the magnitude 
of the latent heat of the phase change and the thermal 
conductance of the flat plate. Only in a few cases with 
a very small Biot number or extremely large thermal 
conductance of the plate, can the situation be properly 
predicted from the solutions of the simplest heat trans- 
fer problems as treated by Pohlhausen and that for 
mass transfer derived analogously from the heat trans- 
fer analyses. 
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TRANSFERT DE CHALEUR ET DE MASSE POUR UN ECOULEMENT A COUCHE 
LIMITE SUR UNE PLAQUE PLANE D’EPAISSEUR FINIE 

R&un~n analyse theoriquement l’evaporation a partir d’une surface de plaque plane pour un &cou- 
lement a couche limite laminaire en prenant en compte la conduction thennique bidimentionnelle dans la 
plaque avec une condition limite thermique de convection sur l’autre face de la plaque. L’effet thermique 
de la volatilite du liquide sur la plaque est neglige. Des distributions de temperature interfaciale et de 
nombre de Nusselt et de Sherwood locaux sont calculees pour un koulement parallele ayant des nombres 
de Prandtl et de Schmidt egaux a l’unite. Les caracteristiques du transfert de chaleur et de masse sont 
significativement inlluenc&es par la dependance vis-a-vis de la temperature de l’tquilibre liquid*vapeur, 
l’importance de la chaleur latente de changement d&tat et la conductance thermique de la plaque plane. 

WARME- UND STOFF~BERT~GUNG IN EINER ~~NZSCHICHTSTR~MUNG 
UBER EINE EBENE PLATTE ENDLIC~ER DICKE 

Zusammenfassmg-Die Verdampfung von der Oberflache einer ebenen Platte in eine laminare 
Grenzschichtstromung llings der Platte wird theoretisch untersucht. Dabei wird die zweidimensionale 
Warmeleitung in der Platte, und die konvektive Randbedingung an der anderen Plattenoberlhiche beriick- 
sichtigt. Einfliisse, die sich miiglicherweise bei der Zufuhr der verdampfbaren Fliissigkeit ergeben, werden 
vernachlassigt. Fur eine parallele Strijmung, bei der sowohl die Prandtl-Zahl als such die Schmidt-Zahl 
gleich eins ist, werden die Verteilungen der Grenzlhichentemperatur sowie der tirtlichen Nusselt- und 
Sherwood-Zahl berechnet. Das Verhalten des W&me- und Stoffilbergangs wird wesentlich von der Tem- 
peraturabhangigkeit des Dampf-/Fliissigkeitsgleichgewichts, von der GrGl3e der Verdampfungsenthalpie 

und von der Warmeleitfahigkeit der ebenen Platte beeinflubt. 

TEIIJIO- H MACCO~EPEH~ B HOrP~H~HOM CJIOE HA IIJIOCKOI? IUIACTHHE 
ICOHEsHOH TO~4~HbI 

AsmoTaumr--Teoperri%oris aiiannsnpyercs Tenno- H Maceonepeiroc npw kicnapeiinu B naMHnapriot4i 
norpamimtohn cnoe Ha tutocwoii nnacrmte c yrleroM neyMepHoR rennonposomiocra B rmacrmie K rpa- 
nmnioro yutosns S-ro pona wa npyrofi nonepxnocrn. Tertnonoti nt#iexr nomona nervefi xmntcocrn p: 
nnacrmie tie npmmbiaercs no t3niiMamie. Paccrnrbmaroma paenpenenemie rehmeparyp tia rpamnre 
paaaena, a rax~e noxanbribre micna Hyccenbra si IIIepsyna a wrylrae, roraa mscna IIpayam H 
IIIbfHsTa pan= enmmue. IIowaoano, STO tia xaparzepsicruxn returo- H Macconepemxa 3Hawfresbme 

mimnfe o~a3bmam 3ammmcm .4aanemn riacbuuewiwx napoe OT -mmparypynen~~a cxpbrroii 

Tennom 4a3onoro npeapameesin, a Tamxe Tennonpoeommcrb nnoc~ok nnacrmibt. 


